MATHEMAT

9546359990

Ram Rajya More, Siwan

XIth, XIIth, TARGET IIT-JEE (MAIN + ADVANCE) & COMPETITIVE EXAM. FOR XII (PQRS)

SOLUTIONS OF SMULTANEOUS LINEAR EQUATIONS & Their Properties

	CONTENTS
Key Concept-I	000000000000000000000000000000000000000
Exercise-I	***************************************
Exercise-II	***************************************
Exercise-III	***************************************
	Solutions of Exercise
Page	***************************************

THINGS TO REMEMBER

- 1. A set of values of the variable $x_1, x_2, ..., x_n$ satisfying all the equations simultaneously is called a solution of the system.
- 2. If a system of equations has one or more solutions, then it is said to be a consistent system of equations, otherwise it is an inconsistent system of equations.
- 3. A system of equations AX = B is called a homogeneous system, if B = O. Otherwise, it is called a non-homogeneous system of equations.
- 4. A system AX = B of n linear equations in n equations has a unique solution given by $X = A^{-1} B$, if $|A| \neq 0$.

If |A| = 0 and (adj A) B = 0, then the system is consistent and has infinitely many solutions.

If |A| = 0 and (adj A) B $\neq 0$, then the system is inconsistent.

5. A homogeneous system of n linear equation in n unknowns is expressible in the form AX = O. If $|A| \neq 0$, then AX = O has unique solution X = 0 i.e. $x_1 = x_2 = ... = x_n = 0$. This solution is called

If |A| = 0, then AX = O has infinitely many solutions.

EXERCISE-1

- 1. If A = is a non-singular matrix, then the system of equations given by AX = B has the unique solution given by $X = A^{-1}B$.
- 2. Use matrixmethod to solve the following system of equations :

$$5x - 7y = 2$$

the trivial solution.

$$7x - 5y = 3$$

3. Solve the following system of equations, using matrix method:

$$x + 2y + z = 7$$
, $x + 3z = 11$, $2x - 3y = 1$

4. Show that the following system of equations is consistent.

$$2x - y + 3z = 5$$
, $3x + 2y - z = 7$, $4x + 5y - 5z = 9$

5. Solve the following system of equations by matrix method:

(i)
$$x + y + z = 3$$

$$2x - y + z = -1$$

$$2x + y - 3z = -9$$

(ii)
$$\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10$$

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10$$

$$\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13$$

(iii)
$$3x + 4y + 2z = 8$$

$$2y - 3z = 3$$

$$x - 2v + 6z = -2$$

(iv)
$$8x + 4y + 3z = 18$$

 $2x + y + z = 5$
 $x + 2y + z = 5$

(v)
$$x + y + z = 6$$

 $x + 2z = 7$
 $3x + y + z = 12$

Show that each one of the following of linear equations is inconsistent: 6.

$$2x + 5y = 7$$
$$6x + 15y = 13$$

7. If
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$ are two square matrices, find AB and hence solve the

systemof linear equations:

$$x - y = 3$$
, $2x + 3y + 4z = 17$, $y + 2z = 7$

8. If
$$A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{bmatrix}$$
, find A^{-1} . Using A^{-1} , solve the system of linear equations:

$$x - 2y = 10$$
, $2x + y + 3z = 8$, $-2y + z = 7$

Solve the following systems of homogeneous linear equations by matrix method: 9.

(i)
$$x + y + z = 0$$

 $x - y - 5z = 0$
 $x + 2y + 4z = 0$

(ii)
$$2x + 3y - z = 0$$

 $x - y - 2z = 0$
 $3x + y + 3z = 0$

EXERCISE-2

The numbef of solutions of the system of eqations: 1.

$$2x + y - z = 7$$

 $x - 3y + 2z = 1$
 $x + 4y - 3z = 5$

(c) 1

(d) 0

Consider the system of equations: 2.

$$a_1x + b_1y + c_1z = 0$$

 $a_2x + b_2y + c_2z = 0$
 $a_3x + b_3y + c_3z = 0$

By: Dir. Firoz Ahmad

If
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$
, then the system has

- (a) more than two solutions
- (c) no solution
- The system of equations: 3.

$$x + y + z = 5$$

$$x + 2y + 3z = 9$$

$$x + 3y + \lambda z = \mu$$

has a unique solution, if

(a)
$$\lambda = 5$$
, $\mu = 13$

(b)
$$\lambda \neq 5$$

(d) only trivial solution (0, 0, 0)

(c)
$$\lambda = 5, \, \mu \neq 13$$
 (d) $\mu \neq 13$

(d)
$$\mu \neq 13$$